Nitric oxide-induced deamination of cytosine and guanine in deoxynucleosides and oligonucleotides.

نویسندگان

  • J L Caulfield
  • J S Wishnok
  • S R Tannenbaum
چکیده

The autoxidation of nitric oxide (NO.) forms the nitrosating agent N2O3, which can directly damage DNA by deamination of DNA bases following nitrosation of their primary amine functionalities. Within the G:C base pair, deamination results in the formation of xanthine and uracil, respectively. To determine the effect of DNA structure on the deamination of guanine and cytosine, the NO.-induced deamination rate constants for deoxynucleosides, single- and double-stranded oligonucleotides, and a G-quartet oligonucleotide were measured. Deamination rate constants were determined relative to morpholine using a Silastic membrane to deliver NO. at a rate of approximately 10-20 nmol/ml/min for 60 min, yielding a final concentration of approximately 600-1200 microM NO2-. GC/MS analysis revealed formation of nanomolar levels of deamination products from millimolar concentrations of deoxynucleosides and oligomers. Deamination rate constants for cytosine and guanine in all types of DNA were lower than the morpholine nitrosation rate constant by a factor of approximately 10(3)-10(4). Xanthine was formed at twice the rate of uracil, and this may have important consequences for mechanisms of NO.-induced mutations. Single-stranded oligomers were 5 times more reactive than deoxynucleosides toward N2O3. Double-stranded oligomers were 10-fold less reactive than single-stranded oligomers, suggesting that Watson-Crick base pairing protects DNA from deamination. G-quartet structures were also protective, presumably because of hydrogen bonding. These results demonstrate that DNA structure is an important factor in determining the reactivity of DNA bases with NO.-derived species.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytosine catalysis of nitrosative guanine deamination and interstrand cross-link formation.

Effects are discussed of the anisotropic DNA environment on nitrosative guanine deamination based on results of an ab initio study of the aggregate 3 formed by guaninediazonium ion 1 and cytosine 2. Within 3, the protonation of 2 by 1 is fast and exothermic and forms 6, an aggregate between betaine 4 (2-diazonium-9H-purin-6-olate) and cytosinium ion 5. Electronic structure analysis of 4 shows t...

متن کامل

Synthetic methylated CpG ODNs are potent in vivo adjuvants when delivered in liposomal nanoparticles.

Although it is well documented that the immunological activity of cytosine-guanine (CpG) motifs is abrogated by 5' methylation of the cytosine residue, encapsulation within stabilized lipid nanoparticles endows these methylated cytosine-guanine- (mCpG-) containing oligonucleotides (ODNs) with potent immunostimulatory activity in murine animal models. Surprisingly, not only do liposomal nanopart...

متن کامل

Investigation of Substituent Effects on the Strength of Hydrogen Bond in the Guanine: Cytosine Base Pairs: A Theoretical Study

In the present work, the substituent effect on the strength of H-bonds in the guanine – cytosine base pair was studied when the substituents are connected to the guanine base through a phenyl ring. In this study, guanine was substituted in the H8 and H9 positions by electron donating (ED) and electron withdrawing (EW) groups mediated by a phenyl ring in the gas phase. The calculations were perf...

متن کامل

Mechanism of nitric oxide induced deamination of cytosine.

A five-step mechanism is proposed for the NO -induced deamination of cytosine. It has been investigated using DFT calculations, including both explicit water molecules and a bulk solvent model to mimic an aqueous environment. According to this mechanism, cytosine first undergoes tautomerization with the assistance of a water molecule from the bulk. A NO(+) cation produced by the autooxidation o...

متن کامل

Hydration energy of Adenine, Guanine, Cytosine and Thymine : Monte Carlo simulation

The hydration of biomolecules is vitally important in molecular biology, so in this paper thesolvation energy and radial distribution function of DNA bases have been calculated by theMonte Carlo simulation.The geometries of isolated Adenine, Guanine, Cytosine, and Thyminehave been optimized using 6-31+G(d,p) basis function sets. These geometries then will be used inthe Monte Carlo calculation o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 21  شماره 

صفحات  -

تاریخ انتشار 1998